We focus on the audio-visual video parsing (AVVP) problem that involves detecting audio and visual event labels with temporal boundaries. The task is especially challenging since it is weakly supervised with only event labels available as a bag of labels for each video. An existing state-of-the-art model for AVVP uses a hybrid attention network (HAN) to generate cross-modal features for both audio and visual modalities, and an attentive pooling module that aggregates predicted audio and visual segment-level event probabilities to yield video-level event probabilities. We provide a detailed analysis of modality bias in the existing HAN architecture, where a modality is completely ignored during prediction. We also propose a variant of feature aggregation in HAN that leads to an absolute gain in F-scores of about 2% and 1.6% for visual and audio-visual events at both segment-level and event-level, in comparison to the existing HAN model.
translated by 谷歌翻译
除了使用硬标签的标准监督学习外,通常在许多监督学习设置中使用辅助损失来改善模型的概括。例如,知识蒸馏增加了第二个教师模仿模型训练的损失,在该培训中,教师可能是一个验证的模型,可以输出比标签更丰富的分布。同样,在标记数据有限的设置中,弱标记信息以标签函数的形式使用。此处引入辅助损失来对抗标签函数,这些功能可能是基于嘈杂的规则的真实标签近似值。我们解决了学习以原则性方式结合这些损失的问题。我们介绍AMAL,该AMAL使用元学习在验证度量上学习实例特定的权重,以实现损失的最佳混合。在许多知识蒸馏和规则降解域中进行的实验表明,Amal在这些领域中对竞争基准的增长可显着。我们通过经验分析我们的方法,并分享有关其提供性能提升的机制的见解。
translated by 谷歌翻译
自动语音识别(ASR)中编辑的后编辑需要自动纠正ASR系统产生的常见和系统错误。 ASR系统的输出在很大程度上容易出现语音和拼写错误。在本文中,我们建议使用强大的预训练的序列模型BART,BART进一步适应训练以作为剥夺模型,以纠正此类类型的错误。自适应培训是在通过合成诱导错误以及通过合并现有ASR系统中的实际错误获得的增强数据集上执行的。我们还提出了一种简单的方法,可以使用单词级别对齐来恢复输出。对重音语音数据的实验结果表明,我们的策略有效地纠正了大量的ASR错误,并在与竞争性基线相比时会产生改善的结果。我们还强调了在印地语语言中相关的语法误差校正任务中获得的负面结果,显示了通过我们建议的模型捕获更广泛上下文的限制。
translated by 谷歌翻译
随着深入学习更加标签的目标,越来越多的论文已经研究了深度模型的主动学习(AL)。然而,普遍存在的实验设置中存在许多问题,主要源于缺乏统一的实施和基准。当前文献中的问题包括有时对不同AL算法的性能的矛盾观察,意外排除重要的概括方法,如数据增强和SGD进行优化,缺乏对al的标签效率等评价方面的研究,并且很少或没有在Al优于随机采样(RS)的情况下的清晰度。在这项工作中,我们通过我们的新开源AL Toolkit Distil在图像分类的背景下统一重新实现了最先进的AL算法,我们仔细研究了这些问题作为有效评估的方面。在积极的方面,我们表明AL技术为2美元至4倍以上$ 4 \倍。与使用数据增强相比,与卢比相比,高效。令人惊讶的是,当包括数据增强时,在使用徽章,最先进的方法,在简单的不确定性采样中不再存在一致的增益。然后,我们仔细分析现有方法如何具有不同数量的冗余和每个类的示例。最后,我们为AL从业者提供了几次见解,以考虑在将来的工作中考虑,例如Al批量大小的效果,初始化的效果,在每一轮中再培训模型的重要性以及其他见解。
translated by 谷歌翻译
随着数据集大小的不断增加,子集选择技术对于普遍的任务变得越来越重要。通常需要引导子集选择以实现某些探索,其中包括聚焦或针对某些数据点,同时避免他人。这些问题的示例包括:i)目标学习,目标是找到具有罕见类或稀有属性的子集,其中模型表现不佳,II)引导摘要,其中数据(例如,图像集合,文本,文档或视频) )总结了以更快的人类消费与特定的额外用户意图更快。受此类应用程序的动机,我们呈现棱镜,丰富的参数化子模块信息措施。通过小说函数及其参数化,PRISM提供了各种建模能力,该模型能力使得在子集的所需质量之间具有权衡,例如具有一组数据点的分集或表示和相似性/相似性。我们展示了如何应用于上面提到的两个真实问题的棱镜,这需要引导子集选择。在这样做时,我们表明棱镜有趣地概括了一些过去的工作,在其中加强了其广泛的效用。通过对不同数据集的广泛实验,我们展示了棱镜的优越性,在目标学习和引导的图像收集概述中
translated by 谷歌翻译
Searching long egocentric videos with natural language queries (NLQ) has compelling applications in augmented reality and robotics, where a fluid index into everything that a person (agent) has seen before could augment human memory and surface relevant information on demand. However, the structured nature of the learning problem (free-form text query inputs, localized video temporal window outputs) and its needle-in-a-haystack nature makes it both technically challenging and expensive to supervise. We introduce Narrations-as-Queries (NaQ), a data augmentation strategy that transforms standard video-text narrations into training data for a video query localization model. Validating our idea on the Ego4D benchmark, we find it has tremendous impact in practice. NaQ improves multiple top models by substantial margins (even doubling their accuracy), and yields the very best results to date on the Ego4D NLQ challenge, soundly outperforming all challenge winners in the CVPR and ECCV 2022 competitions and topping the current public leaderboard. Beyond achieving the state-of-the-art for NLQ, we also demonstrate unique properties of our approach such as gains on long-tail object queries, and the ability to perform zero-shot and few-shot NLQ.
translated by 谷歌翻译
End-to-end text-to-speech (TTS) systems have been developed for European languages like English and Spanish with state-of-the-art speech quality, prosody, and naturalness. However, development of end-to-end TTS for Indian languages is lagging behind in terms of quality. The challenges involved in such a task are: 1) scarcity of quality training data; 2) low efficiency during training and inference; 3) slow convergence in the case of large vocabulary size. In our work reported in this paper, we have investigated the use of fine-tuning the English-pretrained Tacotron2 model with limited Sanskrit data to synthesize natural sounding speech in Sanskrit in low resource settings. Our experiments show encouraging results, achieving an overall MOS of 3.38 from 37 evaluators with good Sanskrit spoken knowledge. This is really a very good result, considering the fact that the speech data we have used is of duration 2.5 hours only.
translated by 谷歌翻译
Reinforcement Learning (RL) algorithms are known to scale poorly to environments with many available actions, requiring numerous samples to learn an optimal policy. The traditional approach of considering the same fixed action space in every possible state implies that the agent must understand, while also learning to maximize its reward, to ignore irrelevant actions such as $\textit{inapplicable actions}$ (i.e. actions that have no effect on the environment when performed in a given state). Knowing this information can help reduce the sample complexity of RL algorithms by masking the inapplicable actions from the policy distribution to only explore actions relevant to finding an optimal policy. This is typically done in an ad-hoc manner with hand-crafted domain logic added to the RL algorithm. In this paper, we propose a more systematic approach to introduce this knowledge into the algorithm. We (i) standardize the way knowledge can be manually specified to the agent; and (ii) present a new framework to autonomously learn these state-dependent action constraints jointly with the policy. We show experimentally that learning inapplicable actions greatly improves the sample efficiency of the algorithm by providing a reliable signal to mask out irrelevant actions. Moreover, we demonstrate that thanks to the transferability of the knowledge acquired, it can be reused in other tasks to make the learning process more efficient.
translated by 谷歌翻译
Explainability has been widely stated as a cornerstone of the responsible and trustworthy use of machine learning models. With the ubiquitous use of Deep Neural Network (DNN) models expanding to risk-sensitive and safety-critical domains, many methods have been proposed to explain the decisions of these models. Recent years have also seen concerted efforts that have shown how such explanations can be distorted (attacked) by minor input perturbations. While there have been many surveys that review explainability methods themselves, there has been no effort hitherto to assimilate the different methods and metrics proposed to study the robustness of explanations of DNN models. In this work, we present a comprehensive survey of methods that study, understand, attack, and defend explanations of DNN models. We also present a detailed review of different metrics used to evaluate explanation methods, as well as describe attributional attack and defense methods. We conclude with lessons and take-aways for the community towards ensuring robust explanations of DNN model predictions.
translated by 谷歌翻译
Through their transfer learning abilities, highly-parameterized large pre-trained language models have dominated the NLP landscape for a multitude of downstream language tasks. Though linguistically proficient, the inability of these models to incorporate the learning of non-linguistic entities (numerals and arithmetic reasoning) limits their usage for tasks that require numeric comprehension or strict mathematical reasoning. However, as we illustrate in this paper, building a general purpose language model that also happens to be proficient in mathematical reasoning is not as straight-forward as training it on a numeric dataset. In this work, we develop a novel framework that enables language models to be mathematically proficient while retaining their linguistic prowess. Specifically, we offer information-theoretic interventions to overcome the catastrophic forgetting of linguistic skills that occurs while injecting non-linguistic skills into language models.
translated by 谷歌翻译